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Abstract

In predictions of railway-induced vibrations, a distinction is generally made between the quasi-static and dynamic

excitation. The quasi-static excitation is related to the static component of the axle loads. The dynamic excitation is due to

dynamic train–track interaction, which is generated by a large number of excitation mechanisms, such as the spatial

variation of the support stiffness and the wheel and track unevenness. In the present paper, the quasi-static excitation and

the dynamic excitation due to random track unevenness are evaluated by means of numerical predictions. A solution

strategy is presented that allows for the evaluation of the second-order statistics of the response due to dynamic excitation

based on the power spectral density function of the track unevenness. Due to the motion of the train, the second-order

statistics of the response at a fixed point in the free field are non-stationary and an appropriate solution procedure is

required. The quasi-static and dynamic contribution to the track and free-field response are analysed for the case of

InterCity and high-speed trains running at a subcritical train speed. It is shown how the train speed affects the quasi-static

and dynamic contribution. Finally, results of numerical predictions for different train speeds are compared with field

measurements that have been performed at a site along the high-speed line L2 Brussels–Köln within the frame of

homologation tests.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The development of numerical models for railway-induced vibrations has received considerable attention in
the past 10 years. The increased interest is partly due to the development of the high-speed train (HST)
network in Europe, the USA and Asia.

In these models, a distinction is generally made between the quasi-static and dynamic excitation. The quasi-
static excitation is related to the static component of the axle loads. Due to the motion of the train, the quasi-
static response is time dependent. For HST tracks on soft soils, the train speed can be close to or even larger
than the critical phase velocity of the coupled track–soil system, in which case the quasi-static excitation leads
to high vibrations and track displacements, affecting track stability and safety [1,2]. The dynamic excitation is
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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determined by dynamic train–track interaction due to several excitation mechanisms, such as the spatial
variation of the support stiffness and the wheel and track unevenness [3–5]. Track unevenness is usually
assumed to be a stationary random process and characterized by its power spectral density (PSD) function [6].

In numerical models, the geometry of the track and the soil is often assumed to be invariant in the
longitudinal direction of the track. This allows the use of efficient ‘‘two-and-a-half dimensional’’ solution
procedures, based on a Fourier transform with respect to the coordinate along the track. Alternative methods
based on the finite element method require appropriate procedures [7] to account for the unbounded domain
and to avoid spurious reflections at boundaries. Aubry et al. [8] have applied a two-and-a-half-dimensional
procedure to study the response of an infinitely long beam, coupled to an elastic half-space, due to a moving
load. The methodology has been applied by Sheng et al. [9,10] to an infinite layered beam model for the track,
coupled to a layered half-space. More recently, this model has been elaborated to account for dynamic
train–track interaction [11,12]. Metrikine et al. [2] study the stability of a moving train bogie, modelled as a two-
degree-of-freedom system. This vehicle model is coupled to a beam of infinite length for the track and a
homogeneous half-space model for the soil, based on developments by Metrikine and Popp [13] and Dieterman
and Metrikine [14]. Lombaert et al. [15,16] apply this methodology in a boundary element formulation to predict
vibrations induced by road [15] and railway traffic [16]. The model has been validated by means of field
measurements [16] and used to assess the vibration isolation efficiency of a floating slab track [17].

Similar models have also been developed for the prediction of vibrations due to subway traffic. Forrest and
Hunt [18,19] and Hussein and Hunt [20] present the ‘‘pipe-in-pipe’’ model where a shell model is used for the
tunnel, while the soil is represented by an elastic full space with a cylindrical cavity. Recently, the soil
model has been elaborated to account for the free surface of an elastic half-space, as well as for horizontal
layering [21].

Coupled two-and-a-half-dimensional finite element and boundary element formulations for railway traffic
at grade and in tunnels have been presented by Sheng et al. [22] and Andersen and Jones [23], respectively.
Whereas the geometry is still longitudinally invariant, an arbitrary cross-section of the track can be
considered. For subway tunnels with a periodic geometry, a similar methodology is proposed by Clouteau
et al. [24] and Degrande et al. [25], where a Flocquet transform is used instead of a Fourier transform. The
advantage is that only a discretisation of a single reference cell is needed to solve the dynamic
track–tunnel–soil interaction problem. The response of periodic structures subjected to moving loads is
discussed by Chebli et al. [26]. These developments have been recently applied by Gupta et al. [27] to predict
vibrations due to subway traffic in Beijing.

In the present paper, the quasi-static excitation and the dynamic excitation due to random track unevenness
are evaluated. The quasi-static and dynamic contribution to the track and free-field response are analysed for
both InterCity and HSTs. The case is considered where the train speed is below the critical phase velocity of
the coupled track–soil system. A comparison is made with field measurements that have been performed
during the homologation tests of the high-speed line L2 between Brussels and Köln. During these tests,
vibrations of the track and in the free field have been measured for several passages of the Thalys HST and an
InterCity train. These data are complementary to earlier data from homologation tests on the line L1 between
Brussels and Paris [28] that have been used by Degrande and Lombaert [29], Paolucci and Spinelli [30] and
Galvı́n and Domı́nguez [31] to validate numerical prediction models.

The outline of this paper is as follows. First, the numerical prediction of railway-induced vibrations is briefly
recapitulated. It is shown how the response due to multiple moving loads is calculated from the transfer
function between the track and the free field. The reader is referred to aforementioned publications on two-
and-a-half-dimensional models for more details on the calculation of this transfer function. Quasi-static and
dynamic axle loads are distinguished. The dynamic axle loads are due to random rail unevenness,
characterized by its PSD function. A solution strategy is presented for the calculation of the non-stationary
second-order statistical characteristics of the response based on the PSD of the random track unevenness. This
allows for the computation of the mean square response in both the time and the frequency domain at a
moderate computational cost. Second, an analysis is made of the influence of the train speed and the type of
train on the quasi-static and dynamic excitation. It is shown how different samples of track unevenness from a
given PSD function yield different results. Third, measured and predicted one-third octave band spectra and
running rms values of the track and free-field velocity are analysed.
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2. The prediction of vibrations due to moving loads

2.1. Dynamic loads travelling on longitudinally invariant media

The response of the coupled track–soil system due to multiple moving loads is calculated from the 3� 3
transfer matrix Hðx0; x; tÞ. Each element hijðx

0; x; tÞ of this matrix represents the response at a point x in the
direction ej at a time t due to an impulse load at a point x0 in the direction ei at the time t ¼ 0. The response
uðx0; tÞ due to an arbitary body load rbðx; tÞ is calculated by means of the dynamic reciprocity theorem:

uðx0; tÞ ¼

Z t

�1

Z
O
Hðx0;x; t� tÞrbðx; tÞdxdt (1)

where O is the domain of the coupled track–soil system. In the following, dynamic reciprocity is used to
replaceHðx0; x; t� tÞ byHTðx; x0; t� tÞ. For na loads moving at a constant speed v in the direction ey, the body
load rbðx; tÞ is equal to

rbðx; tÞ ¼
Xna

k¼1

dðx� xkðtÞÞgkðtÞ (2)

where xkðtÞ ¼ xk0 þ vtey is the time-dependent position of the k-th load, xk0 is the position at the time t ¼ 0
and gkðtÞ is the time history of the k-th axle load. Axle loads are assumed to be positive when their action on
the track is in the positive coordinate direction (Fig. 1).

The response due to the moving loads is calculated as follows:

uðx0; tÞ ¼
Xna

k¼1

Z t

�1

HTðxkðtÞ;x0; t� tÞgkðtÞdt (3)

In the particular case where O is invariant with respect to the longitudinal direction ey (Fig. 1), the transfer
function is unaffected by an arbitrary translation ley of the source and the receiver position. If l equals
�ðyk0 þ vtÞ, the source position xkðtÞ � ley ¼ fxk0; 0; zk0g

T no longer depends on the time t and can be omitted
in the argument of the transfer function. Furthermore, the coordinates x0 and z0 of the receiver position
x0 ¼ fx0; y0; z0gT are assumed to be fixed, so that Eq. (3) is rewritten as follows:

uðy0; tÞ ¼
Xna

k¼1

Z t

�1

HTðy0 � yk0 � vt; t� tÞgkðtÞdt (4)
y

z
x

2B

Fig. 1. Problem geometry.
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In the following, the prime on the receiver coordinate y is omitted. A double forward Fourier transform from
the space–time domain ðy; tÞ leads to the following expression in the wavenumber–frequency domain ðky;oÞ:

~uðky;oÞ ¼
Xna

k¼1

~H
T
ðky;oÞĝkðo� kyvÞ expðþikyyk0Þ (5)

where a tilde denotes the representation in the frequency–wavenumber domain and a hat the representation in
the frequency domain. Müller and Huber [32] were among the first to propose such a formulation to compute
the response of a layered elastic half-space due to a moving load. An inverse wavenumber transform gives the
frequency content of the response:

ûðy;oÞ ¼
Xna

k¼1

1

2p

Z þ1
�1

~H
T
ðky;oÞĝkðo� kyvÞ exp½�ikyðy� yk0Þ�dky (6)

This expression is particularly useful when the transfer function is available in the frequency–wavenumber
domain. An efficient evaluation of the inverse wavenumber transform is proposed by Lieb [33] and
Grundmann et al. [34] based on an additional wavelet transform of the response in the frequency–wave-
number domain.

A change of variables ~o ¼ o� kyv gives the following expression:

ûðy;oÞ ¼
Xna

k¼1

1

2pv

Z þ1
�1

~H
T o� ~o

v
;o

� �
ĝkð ~oÞ exp �i

o� ~o
v

� �
ðy� yk0Þ

� �
d ~o (7)

The transfer function is evaluated at a wavenumber ky ¼ ðo� ~oÞ=v that couples the frequency ~o emitted by
the moving source to the frequency o observed at the receiver. Due to the Doppler effect, a source at a fixed
frequency ~o contributes to the response in a frequency range ½ ~o=ð1þ v=CÞ; ~o=ð1� v=CÞ�, determined by the
smallest phase velocity C of interest. Ditzel et al. [35] have identified the Doppler effect in field measurements
of railway-induced vibrations.

In the following, the response of the coupled track–soil system due to a train passage is calculated. A distinction
is made between the quasi-static and dynamic contribution to the response, based on a decomposition of the time
history gkðtÞ of each axle load into a static component gsk and a dynamic component gdkðtÞ.

The dynamic component gdkðtÞ of the axle loads is calculated by means of a compliance formulation in a
moving frame of reference [36]. This requires the calculation of the track response in a coordinate system
x̂ ¼ fx; ŷ; zgT with ŷ ¼ y� vt. The latter is derived from Eq. (6) by an additional inverse Fourier transform
with respect to o and by replacing y by ŷþ vt on the right-hand side:

uðŷ; tÞ ¼
Xna

k¼1

1

2p

Z þ1
�1

1

2p

Z þ1
�1

~H
T
ðky;oÞĝdkðo� kyvÞ exp½�ikyðŷþ vt� yk0Þ�dky expðiotÞdo (8)

A change of variables o ¼ ~oþ kyv leads to the following expression:

uðŷ; tÞ ¼
1

2p

Z þ1
�1

Xna

k¼1

1

2p

Z þ1
�1

~H
T
ðky; ~oþ kyvÞ exp½�ikyðŷ� yk0Þ�dky

� �
ĝdkð ~oÞ expði ~otÞd ~o (9)

For each axle k, the response is obtained as the inverse Fourier transform with respect to ~o of the product of
the bracketed term and the frequency content ĝdkð ~oÞ of the moving load. Each column of the bracketed term
represents the response in a moving frame of reference due to an impulsive moving load located at yk0 at the
time t ¼ 0.

2.2. Response due to quasi-static excitation

The static component gsk of the axle loads is equal to wkez, where wk is the weight carried by axle k.
Introducing the Fourier transform ĝsk ¼ wkez2pdðoÞ in Eq. (7) gives the quasi-static response:

ûðy;oÞ ¼
1

v
~H
T o

v
;o

� �
ez exp �i

o
v

y
� �� � Xna

k¼1

wk exp i
o
v

yk0

� �" #
(10)
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The first bracketed term on the right-hand side is the response due to a unit axle load, while the second
bracketed term represents a modulation of the response, determined by the distribution of the weight over the
axles and by the train speed v [29,37,38]. This expression is rewritten as follows:

ûðy;oÞ ¼
wl

v
~H
T o

v
;o

� �
ez exp �i

o
v
ðy� yl0Þ

� �h i Xna

k¼1

wk

wl

exp i
o
v
ðyk0 � yl0Þ

� �" #
(11)

where the first bracketed term on the right-hand side now represents the response due to an (arbitrary) axle l.
In the following, the quasi-static response due to a single axle is calculated according to Eq. (11) and compared
with the dynamic response due to a single axle.

2.3. The dynamic axle loads

The calculation of the dynamic component gdkðtÞ of the axle loads is based on the assumption of a perfect
contact between the train and the track. For each axle k, this requires the continuity of displacements at the
contact point between the axle and the track:

uakðtÞ ¼ utkðtÞ þ uw=rkðtÞ (12)

where uakðtÞ is the displacement of axle k and utkðtÞ is the track displacement at the k-th axle position x̂k in the
moving frame of reference. The vector uw=rkðtÞ is the combined wheel/rail unevenness perceived by axle k. In
the present approach, an irregular wheel or track geometry is only accounted for in the term uw=rkðtÞ that
represents the wheel/rail unevenness, while its effect on the dynamic behaviour of the wheel or the track is
disregarded. The axle and track displacements in Eq. (12) are calculated for perfectly smooth wheels and a
longitudinally invariant track, respectively.

When only vertical track unevenness urzðyÞ is accounted for, uw=rkðtÞ becomes:

uw=rkðtÞ ¼ urzðyk0 þ vtÞez (13)

and all axles experience the same excitation, apart from a time delay. Eq. (12) is now written in terms of the
dynamic loads gdkðtÞ. First, Eq. (9) is used to calculate the track displacement ûtkðoÞ:

ûtkðoÞ ¼
Xna

l¼1

1

2p

Z þ1
�1

~H
T
ðky;oþ kyvÞ exp½�ikyðyk0 � yl0Þ�dky

� �
ĝdlðoÞ (14)

The bracketed term is the 3� 3 matrix Ĉ
t

klðoÞ that relates the track displacement at axle k to the dynamic load
at axle l. These matrices are collected into the 3na � 3na track compliance matrix Ĉ

t
ðoÞ that links the vector

ûtðoÞ with the track displacements at all axles to the vector ĝdðoÞ with dynamic loads:

ûtðoÞ ¼ Ĉ
t
ðoÞĝdðoÞ (15)

A mechanical model of the train is used to calculate the vehicle compliance matrix Ĉ
v
ðoÞ:

ûaðoÞ ¼ �Ĉ
v
ðoÞĝd ðoÞ (16)

The signs in Eqs. (15) and (16) are different due to the convention that axle loads are positive when their action
on the track is in the positive coordinate direction. Introducing Eqs. (15) and (16) in Eq. (12) leads to the
following system of equations for the dynamic loads ĝdðoÞ:

½Ĉ
t
ðoÞ þ Ĉ

v
ðoÞ�ĝdðoÞ ¼ �ûw=rðoÞ (17)

where ûw=rðoÞ collects the unevenness ûw=rkðoÞ at all axles. The inverse ½Ĉ
t
ðoÞ þ Ĉ

v
ðoÞ��1 of the combined

track and vehicle compliance can be considered as the dynamic stiffness of the coupled vehicle–track system.
Similar expressions as Eq. (17) are given by Sheng et al. [12] and Auersch [37], who couples a finite element

model for a finite part of the track to a boundary element model for the soil. Grundmann and Lenz [39]
present an alternative solution that allows for the coupling of a nonlinear single-degree-of-freedom system to
the track.



ARTICLE IN PRESS
G. Lombaert, G. Degrande / Journal of Sound and Vibration 319 (2009) 1036–1066 1041
When vertical rail unevenness dominates, the term on the right-hand side of Eq. (17) can be further
elaborated as

ûw=rðoÞ ¼ T̂ðoÞ
1

v
~urz �

o
v

� �
(18)

where ~urzðkyÞ is the wavenumber transform of the rail unevenness urzðyÞ and T̂ðoÞ is a 3na � 1 vector that
collects the phase shift for each axle:

T̂ðoÞ ¼ . . . ; 0; exp
ioyk0

v

� �
; 0; . . .

� 	T

(19)

In this paper, random track unevenness urzðyÞ is modelled as a stationary Gaussian random process
characterized by its one-sided PSD function ~SrzzðkyÞ ½m

2=ðrad=mÞ� [6]. The spectral representation theorem
[40,41] is used to generate samples urzðyÞ of track unevenness as a superposition of harmonic functions with
random phase angles:

urzðyÞ ¼
Xn

m¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~SrzzðkymÞDky

q
cosðkymy� ymÞ (20)

where kym ¼ mDky is the wavenumber sampling, Dky the wavenumber bin and ym are independent random
phase angles uniformly distributed in the interval ½0; 2p�. The samples have a period Y ¼ 2p=Dky and are
asymptotically Gaussian as n tends to infinity and Dky tends to zero for a fixed value of kmax

y ¼ nDky. The
second term on the right-hand side of Eq. (18) becomes:

1

v
~urz �

o
v

� �
¼
Xn

m¼1

�1ffiffiffi
v
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~Srzz

jomj

v

� �
Dom

s
½pdðo� omÞe

þiym þ pdðoþ omÞe
�iym � (21)

where Dom ¼ vDky and om ¼ �vkym. For different samples of unevenness, the harmonic functions have the
same modulus, but a different random phase. The influence of the train speed v on the modulus of the
perceived unevenness can easily be quantified when the PSD ~SrzzðkyÞ is proportional to k�n

y in the relevant
range of wavelengths. For trains running at speeds between 150 and 330 km/h and a frequency range between
1 and 150Hz, this range of wavelengths is situated between 0.3 and 100m. When the PSD ~SrzzðkyÞ is
proportional to k�n

y with n41, ~Srzzðjomj=vÞ increases with the speed v as vn for a fixed sampling in the
frequency domain. The modulus of the perceived unevenness in Eq. (21) therefore increases as v0:5ðn�1Þ. In
many cases, however, the dependence on of the PSD on the wavenumber is more complex and the influence of
the vehicle speed is less straightforward.

The system of equations (17) is now further elaborated by means of Eqs. (18), (19) and (21):

ĝdðoÞ ¼ �½Ĉ
t
ðoÞ þ Ĉ

v
ðoÞ��1T̂ðoÞ

Xn

m¼1

�1ffiffiffi
v
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~Srzz

jomj

v

� �
Dom

s
½pdðo� omÞe

þiym þ pdðoþ omÞe
�iym � (22)

An inverse Fourier transform of this equation shows that the time history of each axle load is a superposition
of harmonic functions. For different realizations of the track unevenness according to Eq. (21), different
values are obtained for the random phase angles ym, while the amplitude of the harmonic functions remains
the same. When the PSD ~SrzzðkyÞ is proportional to k�n

y with n41 and the track compliance matrix Ĉ
t
ðoÞ is

assumed to be unaffected by the train speed v, the modulus jĝdðoÞj of the dynamic loads increases as v0:5ðn�1Þ.
2.4. Response due to dynamic excitation

The dynamic axle loads ĝdkðoÞ are now introduced in Eq. (7):

ûðy;oÞ ¼
Xna

k¼1

1

2p

Z þ1
�1

1

v
~H
T o� ~o

v
;o

� �
exp �i

o� ~o
v

� �
ðy� yk0Þ

� �
ĝdkð ~oÞd ~o (23)
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Due to the Doppler effect, the response at a fixed receiver frequency o is determined by dynamic axle loads
ĝdkð ~oÞ with a source frequency ~o in a frequency range ½oð1� v=CÞ;oð1þ v=CÞ�. Even when the application of
Eq. (22) results in a deterministic value for the modulus jĝdkð ~oÞj, the superposition of contributions for
different source frequencies ~o results in a random value for the modulus jûðy;oÞj of the response. The effect of
the train speed on the modulus jûðy;oÞj cannot be predicted in a similar way as for the dynamic axle loads as
each sample of track unevenness results in a different response. In the following subsection, a methodology is
presented for the calculation of the ensemble average response in both the time and frequency domain.

To compare the ensemble average response to the response for a single sample, Eq. (23) is rewritten as
follows:

ûðy;oÞ ¼
Xna

k¼1

1

2p

Z þ1
�1

Û
T
ðy� yk0;o; ~oÞĝdkð ~oÞd ~o (24)

where Û
T
ðy� yk0;o; ~oÞ is the following 3� 3 matrix:

Û
T
ðy� yk0;o; ~oÞ ¼

1

v
~H
T o� ~o

v
;o

� �
exp �i

o� ~o
v

� �
ðy� yk0Þ

� �
(25)

Comparing this expression to Eq. (7) shows that each element ûijðy;o;omÞ is the response at a point fx; y; zgT

in the direction ej due to a harmonic moving load gðtÞ ¼ ei expði ~otÞ at a position fx; yk0 þ vt; zgT.

2.5. Ensemble average response due to random track unevenness

Track unevenness is often modelled as a stationary Gaussian random process characterized by its PSD
function [6]. When Eq. (12) is applied and the axle and track displacements are calculated for perfectly smooth
wheels and a longitudinally invariant track, respectively, the time history of the dynamic load at each axle is
also a stationary random process. In this case, Eqs. (17) and (18) can be used to calculate the PSD of the
dynamic axle loads from the PSD of the track unevenness according to classical random vibration theory [42].
In a similar way, the statistical characteristics of the response in a moving frame of reference can be calculated
[19,43].

The response at a fixed point, however, is a non-stationary random process. In the case of road traffic, the
vehicle speed is small with respect to the wave velocities in the ground, and the motion of the axle loads can be
neglected to approximate the instantaneous power spectrum of ground vibrations by means of stationary
stochastic methods [44]. These methods also apply when the response at a certain distance from the road due
to a continuous stream of vehicles is considered [45]. Otherwise, a non-stationary auto-correlation function is
needed to characterize the second-order statistics of the response at a fixed point x:

Ruðy; t1; t2Þ ¼ huðy; t1Þ � uðy; t2Þi (26)

where � is the outer product and the angle brackets denote the average with respect to the random track
unevenness. Lombaert et al. [46] calculate alternatively the Wigner–Ville distribution or the instantaneous
power spectrum of the response. Recently, Lu et al. [47] have applied a more simple formulation to compute
the mean square response, i.e. the case where t1 ¼ t2. In the following, such a strategy is presented for the
mean square response in the time and frequency domain.

The time history of the response in the right-hand side of Eq. (26) is calculated by means of Eq. (4):

Ruðy; t1; t2Þ ¼
Xna

k¼1

Xna

l¼1

Z t1

�1

HTðy� yk0 � vt; t1 � t1Þ �
Z t2

�1

HTðy� yl0 � vt; t2 � t2Þ
� �

: hgkðt1Þ � glðt2Þidt1 dt2

(27)

The term between angle brackets is the averaged outer product of the time histories gkðt1Þ and glðt2Þ of the
dynamic loads at axles k and l. When the track unevenness is a stationary random process and the track
geometry is longitudinally invariant, the time histories of the dynamic loads are stationary random processes
as well. The averaged outer product hgkðt1Þ � glðt2Þi is equal to the cross-correlation function Rgklðt2 � t1Þ of
the dynamic load at two axles k and l and is written as the inverse Fourier transform of the (two-sided) 3� 3
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cross-PSD matrix Ŝgklð ~oÞ ½N2=ðrad=sÞ�:

hgkðt1Þ � glðt2Þi ¼
Z þ1
�1

Ŝgklð ~oÞ exp½i ~oðt2 � t1Þ�d ~o (28)

The PSD matrix ŜgðoÞ of all axle loads is a 3na � 3na matrix which is calculated by means of Eqs. (17)
and (18):

ŜgðoÞ ¼ f½Ĉ
t
ðoÞ þ Ĉ

v
ðoÞ��1T̂ðoÞ � ½Ĉ

t
ðoÞ þ Ĉ

v
ðoÞ��1�T̂ðoÞ�g

1

v
~Srzz �

~o
v

� �
(29)

Introducing Eq. (28) in Eq. (27) leads to:

Ruðy; t1; t2Þ ¼

Z þ1
�1

Xna

k¼1

Xna

l¼1

Z t1

�1

HTðy� yk0 � vt; t1 � t1Þ exp �i ~ot1ð Þdt1

�

�

Z t2

�1

HTðy� yl0 � vt; t2 � t2Þ expði ~ot2Þdt2

�
: Ŝgklð ~oÞd ~o (30)

Comparison of the integral with respect to t1 with Eq. (4) shows that this is a matrix with three columns that
each represent the response at a point fx; y; zgT due to a harmonic moving load with a time history expði ~otÞ at
a position fx; yk0 þ vt; zgT. Therefore, this matrix is the time-domain representation UTðy� yk0; t; ~oÞ of the
matrix Û

T
ðy� yk0;o; ~oÞ introduced in Eq. (25). Eq. (30) is now rewritten as:

Ruðy; t1; t2Þ ¼

Z þ1
�1

Xna

k¼1

Xna

l¼1

½UTðy� yk0; t1; ~oÞ �UT�ðy� yl0; t2; ~oÞ� : Ŝgklð ~oÞd ~o (31)

An evaluation of the right-hand side for t1 ¼ t2 allows for the computation of the instantaneous running rms
value of the response.

A similar expression is obtained for the power spectrum Suðy;o1;o2Þ ½m
2=ðrad=sÞ2� of the response:

Suðy;o1;o2Þ ¼
1

4p2

Z þ1
�1

Xna

k¼1

Xna

l¼1

½Û
T
ðy� yk0;o1; ~oÞ � Û

T�
ðy� yl0;o2; ~oÞ� : Ŝgklð ~oÞd ~o (32)

where the mean square value of the modulus is obtained for o1 ¼ o2. Sheng et al. [12] add the power spectrum
of the quasi-static response to the power spectrum of the dynamic response in Eq. (32) to evaluate the total
power spectrum of vibrations induced by running trains.

In the double summations in Eqs. (31) and (32), the terms where kal account for the cross-correlation
between the dynamic loads at two axles k and l. In the present case, where all axles experience the same track
unevenness, these terms are different from zero. In the time domain, however, a good approximation of the
mean square response is obtained when the cross-correlation is neglected. In the frequency domain, cross-
correlation results in the modulation of the response that has been discussed in Section 2.2. If cross-correlation
is neglected or, equivalently, if unevenness perceived by different axles is not correlated, the response in the
frequency domain is smoothed out, as pointed out by Hunt [48] for the similar problem of wheel-base filtering
in the case of road traffic.

In the following, these mean square response quantities are referred to as ensemble averages, as they
represent an average that would be obtained from train passages on several samples of unevenness. If ergodic
samples of track unevenness are considered, the same average is obtained if the response along a single track is
considered.

Comparing Eq. (32) for the ensemble average with Eq. (24) for a single sample shows that, after
discretization with respect to ~o, both expressions require the computation of the matrix Û

T
ðy� yk0;o; ~omÞ

that collects the response due to a series of moving harmonic loads at frequencies ~om. The computational cost
of both expressions is therefore similar.



ARTICLE IN PRESS
G. Lombaert, G. Degrande / Journal of Sound and Vibration 319 (2009) 1036–10661044
3. The influence of the train speed in numerical predictions

3.1. Dynamic characteristics of the track and the soil

In 2002, vibration measurements have been performed during homologation tests of the high-speed line L2
between Brussels and Köln [49]. At the measurement site in Lincent (Belgium), 11 passages of the Thalys HST
at speeds between 218.1 and 326.1 km/h have been measured and 11 passages of the InterCity train with speeds
between 155.9 and 225.3 km/h. Recently, data of two passages of the Thalys HST have been used to validate a
numerical model for the prediction of free-field vibrations due to railway traffic [16].

The track in Lincent is a classical ballasted track with UIC 60 rails supported every 0.60m by rubber pads
on monoblock concrete sleepers. The rails are continuously welded and are fixed with a Pandrol E2039 rail
fastening system and supported by resilient studded rubber rail pads (type 5197) with a thickness of 11mm.
Each rail pad is preloaded with a clip toe load of about 20 kN per rail seat. The prestressed concrete
monoblock sleepers have a length lsl ¼ 2:50m, a width bsl ¼ 0:235m, a height hsl ¼ 0:205m (under the rail)
and a mass msl ¼ 300 kg. The track is supported by a porphyry ballast layer (calibre 25/50, thickness
d ¼ 0:35m) and a limestone sub-ballast layer (thickness d ¼ 0:60m). The density of these ballast layers is
1700 kg=m3. A rail receptance test has been performed [50] to determine the dynamic characteristics of the rail
pads and the ballast [16]. Furthermore, the transfer functions between the track and the free field [53] have
been measured as well.

Borings that have been performed before the construction of the high-speed line show that the soil consists
of a shallow quaterny top layer of silt with a thickness of 1.2m, followed by a layer of fine sand upto a depth
of 3.2m. Between 3.2 and 7.5m is a sequence of stiff layers of arenite (a sediment of a sandstone residue)
embedded in clay. Below the arenite layers is a layer of clay (from 7.5 to 8.5m depth), followed by fine sand
(from 8.5 to 10.0m), below which thin layers of fine sand and clay are found. Below the ballast, the soil has
been mixed with lime to improve its mechanical properties. The dynamic soil characteristics have been
determined by means of two spectral analysis of surface wave (SASW) tests [51] and five seismic cone
penetration tests (SCPT) [52]. These results show that the soil can be represented by a single layer with a
thickness of 3.0m and a shear wave velocity between 150 and 160m/s on top of a half-space with a shear wave
velocity between 250 and 280m/s [51]. A value of 0.03 has been estimated for the material damping ratio b in
deviatoric and volumetric deformatio by fitting measured and predicted transfer functions between the track
and the free field. Furthermore, a value of 1/3 has been assumed for the Poisson’s ratio and a density r equal
to 2000 kg=m3.

In the following, numerical predictions are used to evaluate the quasi-static and dynamic contribution to the
track and free-field response during a train passage. The numerical predictions are compared with the field
measurements during the homologation tests. The highest train speed during the tests is 330 km/h and is
approximately half the value of the shear wave velocity in the top layer of the soil. It can therefore be assumed
that all train speeds are well below the critical velocity of the coupled system. An exceedance of the critical
velocity is only encountered in the relatively rare case where high-speed tracks are supported by a very soft
soil [1,2].

The numerical predictions are obtained by means of an equivalent longitudinally invariant track model. The
dynamic characteristics of the track and the soil have been determined by means of the aforementioned in situ
tests. The reader is referred to a recent journal paper [16] for more details about the model and the
determination of the parameters of the model. In order to better appreciate the results in the following
subsections, however, the response of the sleeper due to a unit impulse on the rail and the mobility in the free
field at 16m from the track are briefly recapitulated here. Fig. 2a compares the predicted and measured
response of the sleeper below the point of impact on the rail in a frequency range upto 400Hz. The peak near
25Hz is due to the soil stratification, where a relatively soft layer overlays a stiffer half-space. The resonance
frequency of the rail on the rail pad is approximately 350Hz and is not observed in the sleeper response.
Although a discrepancy is observed between measured and predicted results in the low-frequency range, the
overall correspondence is relatively good. Fig. 2b shows the mobility in the free field at 16m from the track
upto 150Hz. Both curves show an increasing mobility at low frequencies, decreasing values at frequencies
above 60Hz and a maximum at intermediate frequencies between 10 and 60Hz. The overestimation of the



ARTICLE IN PRESS
G. Lombaert, G. Degrande / Journal of Sound and Vibration 319 (2009) 1036–1066 1045
mobility at high frequencies might be due to a wrong estimation of the material damping ratio that has a large
influence in a broad range of frequencies at large distances.

3.2. Dynamic train characteristics

The high-speed train on the high-speed line L2 between Brussels and Köln is an articulated Thalys PBKA
train with two locomotives and eight carriages. It has a total length of 200.18m. The carriage length Lt, the
distance Lb between bogies, the axle distance La, the total axle mass Mt, the sprung axle mass Ms and the
unsprung axle mass Mu of all carriages are summarized in Table 1.

The InterCity train consists of a locomotive HLE13, seven standard central HVI11 coaches and one back
coach HV I11 BDx. Table 2 summarizes the train characteristics.

3.3. Track unevenness

The track unevenness at the measurement site has been measured shortly before the homologation tests with
the EM-130 track recording car of the Belgian railway company NMBS [54]. The measured unevenness has
been used to derive a one-sided PSD in the range of wavelengths between 6 and 24m. For a train speed of
330 km/h, which is the highest speed during the homologation tests, this range of wavelengths corresponds to
an excitation of the vehicle’s axles in the frequency range between 3.8 and 15.3Hz. For lower train speeds, the
frequency range is even lower. For an accurate prediction of the dynamic axle loads in a frequency range
between 1 and 150Hz, complementary data on the unevenness in the range of wavelengths between 0.3 and
6m and the range between 24 and 100m are required for train speeds between 150 and 330 km/h. However, as
such data were not available, the measured PSD has been fitted by the following PSD ½m2=ðrad=mÞ�:

~SrzzðkyÞ ¼ ~Srzzðky0Þ
ky

ky0

� ��n

(33)

with ky0 ¼ 1 rad=m. A value of 3.5 has been chosen for n, in agreement with values between 3 and 4 reported
by Braun and Hellenbroich [55] for railway unevenness. It is therefore assumed that, on a double logarithmic
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Fig. 2. Measured (grey line) and predicted (a) response of the sleeper due to a unit impulse on the rail and (b) mobility in the free field at

16m from the track.

Table 1

The Thalys HST

Axles (dimensionless) Lt (m) Lb (m) La (m) Mt (kg) Ms (kg) Mu (kg)

2 Locomotives 4 22.15 14.00 3.00 17,000 14,937 2027

2 Side coaches 3 21.84 18.70 3.00 17,000 14,937 2027

3 Central coaches 2 18.70 18.70 3.00 17,000 14,937 2027
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Table 2

The InterCity train

Axles (dimensionless) Lt (m) Lb (m) La (m) Mt (kg) Ms (kg) Mu (kg)

Locomotive HLE13 4 19.11 10.40 3.00 22,500 19,677 2823

Central coach HVI11 A 4 26.40 18.40 2.56 11,610 10,100 1500

Central coach HVI11 B 4 26.40 18.40 2.56 11,602 10,102 1500

End coach HV I11 BDx 4 26.40 18.40 2.56 11,830 10,286 1544
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scale, the PSD function has the same slope in the entire range of wavelengths that is considered in the
predictions. This is not necessarily the case, as the track unevenness in different ranges of wavelengths results
from different physical phenomena. In the present case, however, insufficient data are available to fit a more
elaborate model for the track unevenness. The fit leads to a value of 1:36� 10�8 m2=ðrad=mÞ for ~Srzzðky0Þ.

In the numerical predictions, a single sample urzðyÞ of track unevenness is generated from the PSD by means
of Eq. (20). The spatial sampling is chosen such that, for each train speed, a sufficiently long and densely
sampled stretch of unevenness is obtained. Therefore, Dy ¼ vminDt and Y ¼ 2vmaxT , where vmin and vmax are
the minimum and maximum train speed considered. For each speed, a stretch of urzðyÞ with the appropriate
length is chosen and resampled at Dy ¼ vDt, taking appropriate measures for anti-aliasing. A Hanning
window is applied to avoid leakage.

In the following, the influence of the train speed is investigated by means of numerical predictions of the
dynamic axle loads and the track and free-field response. A distinction is made between the quasi-static and
dynamic excitation. Two passages of both the Thalys HST and the InterCity train are considered. The two
speeds for each train type are the maximum and minimum value that have been measured during the
homologation tests. Next, the scatter between predictions for different samples of track unevenness generated
from the same PSD is discussed for a single passage of the Thalys HST. The results for these samples are
compared with ensemble average quantities. Finally, measured and predicted one-third octave band spectra
and running rms values of the track and free-field velocity are compared for different train speeds.

3.4. The quasi-static response for a single axle of the locomotive

The quasi-static response due to the passage of a single axle of the InterCity train and the Thalys HST is
calculated by means of Eq. (11). Figs. 3a and c show the frequency content of the sleeper velocity due to the
passage of the first axle of the locomotive of the InterCity train at a speed of 156 and 224 km/h, respectively.
At the highest speed, a shift to higher frequencies is observed. Figs. 4a and c show the corresponding time
history of the sleeper velocity. The sleeper velocity has a single upward and downward peak, as can be
expected from the time history of the track deflection. At higher train speeds, the response is shorter in time
and the peak particle velocity (PPV) increases. Figs. 3b and d and 4b and d show similar results for the passage
of the first axle of the locomotive of the Thalys HST at a speed of 218 and 307 km/h, respectively. As the train
speed in Figs. 3b and c is very similar, the difference between both results is only due to the slightly higher total
axle weight of the locomotive of the InterCity train (Tables 1 and 2).

The quasi-static response for the complete train is obtained from Eq. (11) by multiplication of the frequency
content of the response due to a single axle (Fig. 3) and the train spectrum (Fig. 5). Figs. 5a and c show the
spectrum for both passages of the InterCity train. The spectrum is quasi-discrete and shows multiple peaks.
These peaks correspond to multiples of fundamental bogie passage frequencies f b ¼ v=Lb and axle
passage frequencies f a ¼ v=La [29,37,38]. A higher train speed shifts this spectrum to higher frequencies
and does not affect its amplitude. Figs. 5b and d show the spectrum for the two speeds of the Thalys
HST and show a similar shift with the train speed. In Section 3.6, the quasi-static response of the complete
train will be calculated and added to the dynamic response. The quasi-static response in the free field is not
considered here, as the results in Section 3.6 will show that it can be neglected compared with the dynamic
response.



ARTICLE IN PRESS

0 50 100 150
0

0.5

1

1.5

2
x 10−3

Frequency [Hz]

Ve
lo

ci
ty

 [m
/s

/H
z]

0 50 100 150
0

0.5

1

1.5

2
x 10−3

Frequency [Hz]

0 50 100 150
Frequency [Hz]

0 50 100 150
Frequency [Hz]

Ve
lo

ci
ty

 [m
/s

/H
z]

0

0.5

1

1.5

2
x 10−3

Ve
lo

ci
ty

 [m
/s

/H
z]

0

0.5

1

1.5

2
x 10−3

Ve
lo

ci
ty

 [m
/s

/H
z]

Fig. 3. Frequency content of the quasi-static sleeper velocity due to the passage of the first axle of the locomotive for (a) an InterCity train

at 156 km/h, (b) a Thalys HST at 218 km/h, (c) an InterCity train at 224 km/h and (d) a Thalys HST at 307 km/h.
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Fig. 4. Time history of the quasi-static sleeper velocity due to the passage of the first axle of the locomotive for (a) an InterCity train at

156 km/h, (b) a Thalys HST at 218 km/h, (c) an InterCity train at 224 km/h and (d) a Thalys HST at 307 km/h.
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3.5. The dynamic response for a single axle

Prior to the calculation of the track and the free-field response due to dynamic excitation, the dynamic axle
loads are calculated according to Eq. (17). The track compliance matrix is calculated in a moving frame of
reference according to Eq. (14). At frequencies of more than a few Hertz [3], the vehicle’s primary and
secondary suspension isolate the body and the bogie from the wheelset. The vehicle compliance matrix Ĉ

v
ðoÞ is

therefore a diagonal matrix Ĉ
v
ðoÞ ¼ diagf�1=ðMuko2Þg that only takes into account the inertia of the

unsprung mass of the train axles (Tables 1 and 2).
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Fig. 5. Modulation of the frequency content of the quasi-static response for (a) an InterCity train at 156 km/h, (b) a Thalys HST at

218 km/h, (c) an InterCity train at 224 km/h and (d) a Thalys HST at 307 km/h.
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Fig. 6 shows the first diagonal element of the dynamic stiffness matrix ½Ĉ
t
ðoÞ þ Ĉ

v
ðoÞ��1 of the coupled

train–track system that relates the frequency content of the dynamic load at the first axle of the locomotive to
the unevenness perceived by the same axle. Fig. 6a shows the result for the InterCity train at a speed of
156 km/h. At low frequencies, the dynamic stiffness of the coupled system is dominated by the inertia of the
unsprung mass. The real part has a value of approximately �Mu1o2, while the imaginary part is small. Near
65Hz, the real part becomes zero and the imaginary part shows a maximum. This corresponds to the
resonance of the unsprung mass on the track. The results for a train speed of 156 km/h (Fig. 6a) are only
slightly different from those for a speed of 224 km/h (Fig. 6c). This is due to the limited influence of the train
speed on the track compliance matrix Ĉ

t
ðoÞ in the subcritical range of train speeds. The dynamic stiffness of

the first axle of the Thalys HST (Figs. 6b and d) shows a higher resonance frequency than the InterCity train
(Figs. 6a and c) due to the lower unsprung mass of the locomotive ’s axle (Tables 1 and 2).

The perceived unevenness in the right-hand side of Eq. (17) is calculated from the sample of unevenness that
has been generated by means of Eq. (20) according to the procedure described in Section 3.3. Fig. 7 shows the
frequency content of the dynamic load of the first axle of the locomotive of the InterCity train and Thalys
HST for both train speeds. For both train types and speeds, a maximum occurs between 40 and 70Hz that
corresponds to the resonance frequency of the unsprung mass on the track. At a similar train speed, the
dynamic load of the locomotive of the InterCity train (Fig. 7b) seems slightly higher than for the Thalys HST
(Fig. 7c) at frequencies below the resonance frequency and lower at frequencies above. In the following
section, the influence of the train speed is investigated by means of one-third octave band spectra of the
dynamic loads.

The dynamic load of the first axle of the locomotive (Fig. 7) is now used to calculate the dynamic response
of the sleeper in the frequency domain (Fig. 8) by means of Eq. (23). The largest values are observed near the
resonance frequency of the unsprung mass on the track. A comparison of Figs. 8a and c or b and d shows that
the sleeper velocity slightly increases with increasing train speed. The dynamic sleeper velocity is smaller than
the quasi-static velocity (Fig. 3) at low frequencies, but dominates at higher frequencies.

In the time domain (Fig. 9), the dynamic sleeper velocity has a much longer duration than the quasi-static
velocity (Fig. 4), as it consists of waves emitted by the moving source, and not of a quasi-static deflection
pattern that travels with the source. The PPV of the dynamic response is much smaller than the quasi-static
PPV (Fig. 4).
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Fig. 6. Real (solid line) and imaginary part (dotted line) of the dynamic stiffness of the first axle of the locomotive coupled to the track for

(a) an InterCity train at 156 km/h, (b) a Thalys HST at 218 km/h, (c) an InterCity train at 224 km/h and (d) a Thalys HST at 307 km/h.
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Fig. 7. Frequency content of the dynamic load of the first axle of the locomotive for (a) an InterCity train at 156 km/h, (b) a Thalys HST

at 218 km/h, (c) an InterCity train at 224 km/h and (d) a Thalys HST at 307 km/h.
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Fig. 10 shows the frequency content of the vertical velocity in the free field at 16m from the track. As for the
sleeper, the frequency content of the velocity is large near the resonance frequency of the unsprung mass on
the track. The response at higher frequencies is relatively more attenuated due to material damping in the soil.
The increase of the dynamic load with the train speed (Fig. 7) also affects the vibrations in the free-field, so
that a slightly higher modulus of the free field velocity is obtained for increasing train speeds.

Fig. 11 shows the time history of the vertical velocity in the free field. Compared with the results for the
sleeper (Fig. 9), the maximum is delayed in time due to wave propagation in the soil. At a larger train speed,
the PPV slightly increases and the response duration decreases.
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Fig. 8. Frequency content of the dynamic sleeper velocity due to the passage of the first axle of the locomotive for (a) an InterCity train at

156 km/h, (b) a Thalys HST at 218 km/h, (c) an InterCity train at 224 km/h and (d) a Thalys HST at 307 km/h.
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Fig. 9. Time history of the dynamic sleeper velocity due to the passage of the first axle of the locomotive for (a) an InterCity train at

156 km/h, (b) a Thalys HST at 218 km/h, (c) an InterCity train at 224 km/h and (d) a Thalys HST at 307 km/h.
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3.6. Quasi-static and dynamic response for the complete train

Fig. 12 shows the frequency content of the sleeper velocity due to the passage of the complete InterCity train
and Thalys HST. The response is obtained as the superposition of the quasi-static and dynamic response due
to all axles.
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Fig. 10. Frequency content of the dynamic free-field velocity at 16m from the track due to the passage of the first axle of the locomotive

for (a) an InterCity train at 156 km/h, (b) a Thalys HST at 218 km/h, (c) an InterCity train at 224 km/h and (d) a Thalys HST at 307 km/h.
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Fig. 11. Time history of the dynamic free-field velocity at 16m from the track due to the passage of the first axle of the locomotive for (a)

an InterCity train at 156 km/h, (b) a Thalys HST at 218 km/h, (c) an InterCity train at 224 km/h and (d) a Thalys HST at 307 km/h.
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In order to distinguish between the quasi-static and dynamic contribution to the sleeper velocity, the one-
third octave band spectra of the total and dynamic sleeper velocity are computed (Fig. 13) according to the
German standard DIN 45672-2 [56]. According to the standard, a reference period T2 is determined for the
total sleeper velocity during which the response is considered to be stationary. The same reference period T2

has been used to compute the one-third octave band spectra of the dynamic contribution. The quasi-static
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Fig. 12. Frequency content of the sleeper velocity for (a) an InterCity train at 156 km/h, (b) a Thalys HST at 218 km/h, (c) an InterCity

train at 224 km/h and (d) a Thalys HST at 307 km/h.
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contribution dominates the sleeper velocity in the low-frequency range, where the largest values are found in
the one-third octave band spectra. With an increasing train speed, the influence of the quasi-static contribution
shifts to higher frequencies.

In the time history of the sleeper velocity (Fig. 14), the passage of individual bogies is recognized. The quasi-
static sleeper response due to a single axle (Fig. 9) has a very short duration so that, after superposition,
contributions of axles from different bogies do not interfere. In Fig. 14a, the InterCity train is in ‘‘pull mode’’
and the axles of the locomotive that carry the largest weight (Table 2) come first. In Fig. 14c, the InterCity
train is in ‘‘push mode’’ and higher velocity levels are observed during the passage of the locomotive at the end
of the train. The results for the Thalys HST (Figs. 14b and d) show a similar response for each bogie, as each
axle carries the same total weight.

Fig. 15 shows the frequency content of the free-field velocity at 16m from the track. When the modulation
of the frequency content for quasi-static excitation (Fig. 5), the dynamic response due to a single axle (Fig. 10)
and the complete response (Fig. 15) are compared, it is observed that the dynamic response also shows a
modulation. This is due to the superposition of contributions from different axles with similar magnitude, but
different phase, determined by the train speed and axle spacing.

Fig. 16 compares the total and dynamic one-third octave band spectra of the total and dynamic free-field
velocity at 16m from the track. In the free field, the total response is dominated by the dynamic excitation.
A significant contribution of the quasi-static excitation to the total response is only found in the low-frequency
range below 10Hz. When the free-field response at 16m from the track (Fig. 16) is compared with the sleeper
response (Fig. 13), it is observed that the dynamic response becomes more important, even in the one-third
octave bands at relatively low frequencies. This is can be explained as follows. At subcritical train speeds, the
quasi-static response is due to the nearly static deflection around each axle. As the axle moves, the deflections
travel with the axle and the displacements at a fixed point in the free field are time dependent. Due to the shape
of the deflection bowl, the variation in time becomes slower with increasing distance from the track. As a
result, the frequency content of the quasi-static contribution shows a strong shift to lower frequencies with an
increasing distance from the track. In the present case, the shift to lower frequencies of the quasi-static
response is stronger than the one for the dynamic response, which is due to the material damping in the
soil [16].

The results in Fig. 16 show that the lack of agreement between field measurements and predictions of free-
field vibrations by Degrande and Lombaert [29] and Paolucci and Spinelli [30] is due to the neglection of the
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Fig. 14. Time history of the sleeper velocity for (a) an InterCity train at 156 km/h, (b) a Thalys HST at 218 km/h, (c) an InterCity train at

224 km/h and (d) a Thalys HST at 307 km/h.
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Fig. 13. One-third octave band spectra of the total (solid line) and dynamic (dotted line) sleeper velocity for (a) an InterCity train at

156 km/h, (b) a Thalys HST at 218 km/h, (c) an InterCity train at 224 km/h and (d) a Thalys HST at 307 km/h.
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dynamic excitation. Sheng et al. [11] have studied the importance of the quasi-static and dynamic
contributions to the track and free-field response in three case studies. For the case of the X-2000 high-speed
train in Ledsgård (Sweden) and train speeds below the critical phase velocity of the coupled track–soil system,
similar observations are made. For higher train speeds, however, the quasi-static contribution to the free-field
response becomes more important and can no longer be neglected. More results are given in Sheng et al. [12]
where several track models are discussed. Auersch [38] has drawn similar conclusions based on measured and
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Fig. 15. Frequency content of the free-field velocity at 16m from the track for (a) an InterCity train at 156 km/h, (b) a Thalys HST at

218 km/h, (c) an InterCity train at 224 km/h and (d) a Thalys HST at 307 km/h.
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Fig. 16. One-third octave band spectra of the total (solid line) and dynamic (dotted line) free-field velocity at 16m from the track for (a) an

InterCity train at 156 km/h, (b) a Thalys HST at 218 km/h, (c) an InterCity train at 224 km/h and (d) a Thalys HST at 307 km/h.
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predicted vibrations for the case of the ICE 3 and Thalys HSTs on the line Berlin-Hannover. In the case of
HSTs in the subcritical speed range, predictions of vibrations based on Krylov’s model [57,58], such as those
recently presented by Degrande and Lombaert [29], Takemiya [59], Paolucci and Spinelli [30] and Galvı́n and
Domı́nguez [60,31], are therefore only well suited to predict the response in the immediate vicinity of the track.

Fig. 17 shows the time history of the free-field velocity at 16m from the track. Contrary to the sleeper
response in Fig. 14, the passage of individual bogies is no longer observed. The dynamic response for a single
axle (Fig. 11) has a longer duration, so that contributions of axles from different bogies overlap in Fig. 17. The
results in Figs. 17a and c for the InterCity train suggest a slightly higher response during the passage of the
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Fig. 17. Time history of the free-field velocity at 16m from the track for (a) an InterCity train at 156 km/h, (b) a Thalys HST at 218 km/h,

(c) an InterCity train at 224 km/h and (d) a Thalys HST at 307 km/h.
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locomotive, where the axles have a higher unsprung mass. For similar train speeds, the vibration levels during
the passage of the InterCity train (Fig. 17c) and the Thalys HST (Fig. 17b) are similar.

3.7. Variation due to unevenness sampling

In Section 2.4, it has been discussed how different samples of track unevenness yield different predictions of
the track and free-field response. The track and free-field response due to a passage of the Thalys HST at a
speed of 218 km/h are now calculated for 6 samples of track unevenness urzðyÞ. The results are compared with
the mean square response as computed by means of Eqs. (31) and (32).

The 6 samples of unevenness are generated by means of Eq. (20) as a superposition of harmonic functions
with the same amplitude, but a different random phase. Therefore, their one-third octave band spectra
(Fig. 18a) coincide, as well as the one-third octave band spectra of the dynamic load of the first axle of the
locomotive (Fig. 18b).

Fig. 19 shows the one-third octave band spectrum and running rms value of the sleeper velocity during the
passage of the Thalys HST at 218 km/h for all samples. A substantial difference between the one-third octave
band spectra (Fig. 19a) only appears in the high-frequency range, where the sleeper response is due to dynamic
excitation. Fig. 19b shows the running rms value of the sleeper velocity, computed with a time window of 1 s as
prescribed by the ISO 2631 standard [61]. The results for the running rms value almost coincide as the quasi-
static contribution dominates the sleeper response.

In Section 2.5, a procedure for the calculation of the ensemble average response due to dynamic excitation
has been discussed. Fig. 20a shows the one-third octave band spectrum of the ensemble average sleeper
velocity in the frequency domain according to Eq. (32). As no stationary part of the time history is selected for
the calculation of the one-third octave band spectra, the values depend on the time period T in the calculation
and cannot be compared in absolute terms to the results in Fig. 19a. A quantitative result of the one-third
octave band spectrum is obtained as follows. First, the square modulus of the quasi-static sleeper velocity is
added to the mean square modulus of the dynamic contribution. Second, the one-third octave band
representation of this spectrum is scaled with

ffiffiffiffiffiffiffiffiffiffiffiffi
T2=T

p
, where T is the time period in the calculation and T2 is

the reference period according to the DIN 45672-2 standard. The resulting one-third octave band spectrum in
Fig. 20c compares both qualitatively and quantitatively very well with the previous spectra for the 6 samples in
Fig. 19a.
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Fig. 18. (a) One-third octave band spectra of 6 samples of vertical track unevenness and (b) the corresponding one-third octave band

spectra of the dynamic load of the first axle of the locomotive of the Thalys HST for a train speed of 218 km/h.
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Fig. 19. (a) One-third octave band spectra and (b) running rms value of the sleeper velocity due to a passage of the Thalys HST at a speed

v of 218 km/h for 6 samples of vertical track unevenness. The dotted and solid line in (b) show the running rms value outside and during

the DIN 45672-2 reference period T2, respectively.
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The reference period T2 for the scaling of the one-third octave band spectra has been determined from the total
instantaneous rms value of the sleeper velocity. This value is obtained as the root of the sum of the square quasi-
static response and the mean square dynamic response (Fig. 20c) according to Eq. (31). The total instantaneous
rms value has been used to compute the total running rms value with a time window of 1 s (Fig. 20d). Due to the
small dynamic contribution to the sleeper response, the result in Fig. 19b is very similar for all samples.

Fig. 21a shows the one-third octave band spectrum of the free-field velocity at 16m from the track for all
samples. Contrary to the results for the sleeper, differences upto 10 dB are now observed in the entire
frequency range. The running rms values of the free-field velocity (Fig. 21b) differ upto a factor of 2. Due to
ergodicity, this means that, even when the track unevenness has stationary statistical characteristics,
substantial differences are expected between vibration levels in the free-field along a railway line. It would
therefore be interesting to verify the variability of the free-field response along the track with an experimental
setup as used by Ditzel et al. [35].

Fig. 22a shows the unscaled ensemble average one-third octave band representation of the free-field velocity
at 16m from the track due to dynamic excitation. In a similar way as for the sleeper, the one-third octave band
spectrum of the total free-field velocity is obtained (Fig. 22c). This gives a good estimate of the one-third
octave band spectra for actual samples of unevenness (Fig. 21a). The instantaneous running rms value of the
dynamic response (Fig. 22b) has been used to calculate the running rms value of the total response (Fig. 22d)
with a time window of 1 s. Although only 6 samples are considered in Fig. 21b, their average corresponds well
to the ensemble average.

4. Comparison of predictions and field measurements

4.1. One-third octave band spectra of the vibration velocity for two train speeds

Before comparing numerical predictions and measured data of the response during a train passage, the one-
third octave band spectra of perceived track unevenness are shown (Fig. 23). In Fig. 23a, the train speed
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Fig. 21. (a) One-third octave band spectra and (b) running rms value of the free-field velocity at 16m from the track for 6 samples of

vertical track unevenness. The dotted and solid line in (b) show the running rms value outside and during the DIN 45672-2 reference

period T2, respectively.
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Fig. 20. Vertical sleeper velocity due to a passage of the Thalys HST at a speed v of 218 km/h. Ensemble average of the (a) one-third

octave band representation and (b) instantaneous rms value due to dynamic excitation and (c) one-third octave band spectrum and (d)

running rms value of the total response. The dotted and solid line in (d) show the running rms value outside and during the DIN 45672-2

reference period T2, respectively.
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increases from 156 to 224 km/h. Since the PSD of the unevenness is assumed to be proportional to k�3:5y , the
modulus of the perceived unevenness is expected to increase with increasing train speed as v1:25. For the given
train speeds, this is an increase by 3.9 dB, as observed in Fig. 23a. In Fig. 23b, the train speed increases from
218 to 307 km/h, which results in an increase of the perceived unevenness by 3.7 dB.

Fig. 24 compares one-third octave band spectra of the dynamic load of the first locomotive axle for the
InterCity train and the Thalys HST. The narrow-band representation of these spectra has been previously
shown in Fig. 7. The predicted dynamic axle load depends on the train speed in two ways, as both the
perceived unevenness and the track compliance are affected. For both train types, the dynamic axle load
increases with the train speed in a similar way as the perceived unevenness in Fig. 23.

Fig. 25 compares measured and predicted one-third octave band spectra of the sleeper velocity for different
train speeds. Fig. 25a and b compare predictions for the passages of the InterCity train and the Thalys HST,
respectively, for a single sample of track unevenness. The narrow-band representation of these spectra has
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Fig. 22. Vertical free-field velocity at 16m from the track due to a passage of the Thalys HST at a speed v of 218 km/h. Ensemble average

of the (a) one-third octave band representation and (b) instantaneous rms value due to dynamic excitation and (c) one-third octave band

spectrum and (d) running rms value of the total response. The dotted and solid line in (d) show the running rms value outside and during

the DIN 45672-2 reference period T2, respectively.
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Fig. 23. One-third octave band spectra of the vertical track unevenness for (a) an InterCity train at 156km/h (thin black line) and 224km/h

(thick black line) and (b) a Thalys HST at 218 km/h (thin black line) and 307km/h (thick black line).
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been previously shown in Fig. 15. As the sleeper velocity is predominantly due to quasi-static excitation, the
increase of the dynamic load in Fig. 24 is of little importance. Instead, the one-third octave band spectra show
the previously discussed shift to higher frequencies for increasing train speeds (Fig. 15). Due to the dominant
quasi-static contribution to the sleeper velocity, the ensemble average response (Figs. 25c and d) is very similar
to the response for a single sample. The predictions for a single sample of unevenness and the ensemble
average are now compared with the measurements in Figs. 25e and f. The measured response in the frequency
bands below 3Hz is affected by a high-pass filter that has been used to eliminate the DC component and avoid
drifting by the integration of the accelerometer data. At higher frequencies above 40Hz, the sleeper velocity is
underestimated. In this frequency range, the sleeper velocity is predominantly due to dynamic excitation
(Fig. 13), which seems to be underestimated. The quasi-static contribution to the sleeper velocity at lower
frequencies is more accurately predicted, which is due to the successful identification of the dynamic track
properties by means of a rail receptance test [16]. Generally, however, a reasonable agreement is obtained,
with similar trends for increasing train speeds.
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Fig. 24. One-third octave band spectra of the dynamic load of the first locomotive axle for (a) an InterCity train at 156 km/h (thin black

line) and 224 km/h (thick black line) and (b) a Thalys HST at 218 km/h (thin black line) and 307 km/h (thick black line).
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Fig. 25. One-third octave band spectra of the sleeper velocity: (a) a single sample, (c) the ensemble average and (e) measurements for a

passage of the InterCity train at 156 km/h (thin black line) and 224km/h (thick black line) and (b) a single sample, (d) the ensemble average

and (f) measurements for a passage of the Thalys HST at 218 km/h (thin black line) and 307 km/h (thick black line).
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Fig. 26 compares the measured and predicted running rms value of the sleeper velocity for different train
speeds. The predictions for a single sample of track unevenness (Figs. 26a and c) and the ensemble average
(Figs. 26c and d) show a clear increase with the train speed. Figs. 26e and f show the corresponding results
from field measurements. In the measured rms value for the InterCity train, the distinction between the
passage of the axles of the locomotive and the other coaches is less pronounced than in the predictions.
Generally, however, similar trends are observed, with increasing vibration levels for higher train speeds and a
good quantitative agreement between results from measurements and numerical predictions.



ARTICLE IN PRESS

−4 −2 0 2 4 6
0

0.005

0.01

0.015

0.02

Time [s]

R
M

S
 v

el
oc

ity
 [m

/s
]

−4 −2 0 2 4 6
0

0.005

0.01

0.015

0.02

Time [s]

−4 −2 0 2 4 6
Time [s]

−4 −2 0 2 4 6
Time [s]

−4 −2 0 2 4 6
Time [s]

−4 −2 0 2 4 6
Time [s]

R
M

S
 v

el
oc

ity
 [m

/s
]

0

0.005

0.01

0.015

0.02

R
M

S
 v

el
oc

ity
 [m

/s
]

0

0.005

0.01

0.015

0.02

R
M

S
 v

el
oc

ity
 [m

/s
]

0

0.005

0.01

0.015

0.02

R
M

S
 v

el
oc

ity
 [m

/s
]

0

0.005

0.01

0.015

0.02

R
M

S
 v

el
oc

ity
 [m

/s
]

Fig. 26. Running rms value of the sleeper velocity: (a) a single sample, (c) the ensemble average and (e) measurements for a passage of the

InterCity train at 156 km/h (thin black line) and 224 km/h (thick black line) and (b) a single sample, (d) the ensemble average and (f)

measurements for a passage of the Thalys HST at 218 km/h (thin black line) and 307km/h (thick black line). The dotted and solid line in

(d) show the running rms value outside and during the DIN 45672-2 reference period T2, respectively.
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Fig. 27 compares measured and predicted one-third octave band spectra of the free-field velocity at 16m
from the track for different train speeds. Although the dynamic axle loads increase in the entire frequency
range (Fig. 24), a similar trend is not observed in the one-third octave band spectra of the free-field velocity for
the single sample of track unevenness (Figs. 27a and b) and the ensemble average (Figs. 27c and d). Similar
conclusions hold for the measurements in Figs. 27c and d. Generally, a reasonable agreement is obtained
between the results from measurements and numerical predictions. This is due to the successful identification
of the dynamic soil properties, based on results from SASW tests, SCPT and transfer functions between the
track and the free field [16].

Fig. 28 compares the measured and predicted running rms value of the free-field velocity at 16m from the
track for different train speeds. The results for a single sample of track unevenness (Figs. 28a and b) show a
moderate increase of the rms value with the train speed. The ensemble average (Figs. 28c and d), however,
shows a clear increase proportional to v1:25, as predicted for the dynamic axle loads. These results suggest that,
although on average an increase of the train speed is expected, the trend may not be observed for individual
samples of track unevenness. Figs. 28e and f show the corresponding results from field measurements. As for
the sleeper, the distinction between the passage of the axles of the locomotive and the other carriages is less
clear in the measurements than in the predictions. In the case of the Thalys HST, a slight increase of vibration
levels with increasing train speed is observed in the measurements.
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Fig. 27. One-third octave band spectra of the free-field velocity at 16m from the track: (a) a single sample, (c) the ensemble average and (e)

measurements for a passage of the InterCity train at 156 km/h (thin black line) and 224 km/h (thick black line) and (b) a single sample, (d)

the ensemble average and (f) measurements for a passage of the Thalys HST at 218 km/h (thin black line) and 307 km/h (thick black line).
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4.2. Peak rms value of the vibration velocity for all train passages

In this subsection, a comparison is made of the predicted and measured peak rms value of the velocity for all
passages of the InterCity train and Thalys HST during the homologation tests. Fig. 29 shows the peak value of
the rms value of the predicted ensemble average and the measured velocity as a function of the train speed.
Apart from the response of the sleeper and in the free field at 16m from the track, the results in the free field at
8, 32, 48 and 64m from the track are also shown.

The predictions for both train types show a similar trend, with vibration levels that gradually increase with
increasing train speed. In the free field, where the dynamic excitation dominates the response, the vibration
levels increase by 8 dB when the train speed is raised from 156 upto 330 km/h. The influence of the train speed
is therefore similar as for the perceived unevenness, with an increase according to v1:25, based on the assumed
PSD function of the track unevenness. When the vibration levels at different distances from the track are
compared, a decrease of 5–15 dB is found when the distance is doubled.

A comparison of the predicted and measured values shows a very good agreement at small and large
distances from the track. At intermediate distances of 32 and 48m from the track, the agreement is less good,
although the difference is not larger than 10 dB. The good agreement at 64m from the track is partly due to
the fact that the transfer function at this distance from the track has been used to estimate the material
damping ratio of the soil in the numerical model [16].

In the measurements, the difference between the results for the InterCity train and the Thalys HST is more
pronounced, with relatively higher vibration levels for the InterCity train. For each type of train and for most
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Fig. 28. Running rms value of the free-field velocity at 16m from the track: (a) a single sample, (c) the ensemble average and (e)

measurements for a passage of the InterCity train at 156 km/h (thin black line) and 224km/h (thick black line) and (b) a single sample, (d)

the ensemble average and (f) measurements for a passage of the Thalys HST at 218 km/h (thin black line) and 307 km/h (thick black line).

The dotted and solid line in (d) show the running rms value outside and during the DIN 45672-2 reference period T2, respectively.
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points in the free field, a moderate increase of the vibration levels is observed with increasing train speeds. In
the case of the InterCity train, the measured vibration levels at 8m from the track suggest a decrease of
vibration levels with the train speed, but this could be due to a single inaccurate result for a speed of 156 km/h.
The differences between measurements and predictions may be due to the fact that only a single sample of
track unevenness is considered in the experiments or due to an inaccurate model of the track unevenness. If the
track unevenness can be represented by the PSD function in Eq. (33), a smaller value of n results in a smaller
increase of vibration levels with the train speed and could explain the trend in the measured vibration levels.

5. Conclusion

In this paper, a numerical model for the prediction of railway-induced vibrations is used to evaluate the
quasi-static excitation and the dynamic excitation due to random track unevenness. A solution strategy is
presented that allows for the evaluation of the non-stationary statistics of the response with a moderate
computational cost. The quasi-static and dynamic contribution to the track and free-field response are
evaluated for InterCity trains and the Thalys HST. The train speed is in the subcritical range, below the critical
phase velocity of the coupled track–soil system. Finally, numerical predictions and field measurements for
different train speeds are compared.
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The following conclusions are made for vibrations induced by InterCity and HSTs in the subcritical speed
range:
(1)
 The quasi-static contribution dominates the track response, while the free-field response is dominated by
the dynamic contribution.
(2)
 Numerical models such as Krylov’s model that only account for quasi-static excitation are only well suited
to predict the response in the immediate vicinity of the track.
(3)
 The quasi-static track response increases moderately with the train speed.

(4)
 When the dynamic excitation is due to random track unevenness, the influence of the train speed on the

free-field vibrations depends on the PSD of the track unevenness.

(5)
 In the case where the PSD function of the unevenness is proportional to k�n

y , the perceived unevenness and
the modulus of the dynamic axle loads increase as vð0:5n�1Þ when n41.
(6)
 When different samples of the track unevenness are considered, the average free-field response is expected
to increase in a similar way with increasing train speed. This trend may not be observed, however, for
individual samples of the track unevenness.
(7)
 For a single sample of random track unevenness, the response along the track is a random process as well.
If the track unevenness is ergodic, the average response along the track is equal to the ensemble average
response.
(8)
 Both measured and predicted free-field vibrations show a very moderate increase with increasing train
speed.
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(9)
 Based on a successful identification of the dynamic track and soil characteristics, the peak rms value of the
velocity during the passage of InterCity trains and the Thalys HST is predicted with a difference of less
than 5 dB for most train speeds and measurement points.
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